न्यूटन का सार्वत्रिक गुरुत्वाकर्षण का सिद्धान्त

कोई भी वस्तु ऊपर से गिरने पर सीधी पृथ्वी की ओर आती है। ऐसा प्रतीत होता है, मानो कोई अलक्ष्य और अज्ञात शक्ति उसे पृथ्वी की ओर खींच रही है। इटली के वैज्ञानिक, गैलिलीयो गैलिलीआई ने सर्वप्रथम इस तथ्य पर प्रकाश डाला था कि कोई भी पिंड जब ऊपर से गिरता है तब वह एक नियत त्वरण से पृथ्वी की ओर आता है। त्वरण का यह मान सभी वस्तुओं के लिए एक समान रहता है। अपने इस निष्कर्ष की पुष्टि उसने प्रयोगों और गणितीय विवेचनों द्वारा की है।
इसके बाद सर आइज़क न्यूटन ने अपनी मौलिक खोजों के आधार पर बताया कि केवल पृथ्वी ही नहीं, अपितु विश्व का प्रत्येक कण अन्य दूसरे कण को अपनी ओर आकर्षित करता रहता है। दो कणों के बीच कार्य करनेवाला आकर्षण बल उन कणों की संहतियों के गुणनफल का (प्रत्यक्ष) समानुपाती तथा उनके बीच की दूरी के वर्ग का व्युत्क्रमानुपाती होता है। कणों के बीच कार्य करनेवाले पारस्परिक आकर्षण को गुरुत्वाकर्षण (Gravitation) तथा उससे उत्पन्न बल को गुरुत्वाकर्षण बल (Force of Gravitation) कहा जाता है। न्यूटन द्वारा प्रतिपादित उपर्युक्त नियम को न्यूटन का गुरुत्वाकर्षण नियम (Law of Gravitation) कहते हैं। कभी-कभी इस नियम को “गुरुत्वाकर्षण का प्रतिलोम वर्ग नियम” (Inverse Square Law) भी कहा जाता है।
उपर्युक्त नियम को सूत्र रूप में इस प्रकार व्यक्त किया जा सकता है : मान लिया m1 और m2 संहति वाले दो पिंड परस्पर d दूरी पर स्थित हैं। उनके बीच कार्य करनेवाले बल F का मान होगा :
F = G m1 m2/d‍2 …………………….(1)
यहाँ G एक समानुपाती नियतांक है जिसका मान सभी पदार्थों के लिए एक जैसा रहता है। इसे गुरुत्वीय स्थिरांक (Gravitational Constant) कहते हैं। इस नियतांक की विमा (dimension) है और आंकिक मान प्रयुक्त इकाई पर निर्भर करता है। सूत्र (१) द्वारा किसी पिंड पर पृथ्वी के कारण लगनेवाले आकर्षण बल की गणना की जा सकती है। मान लीजिए पृथ्वी की संहति M है और इसके धरातल पर m संहति वाला कोई पिंड पड़ा हुआ है। पृथ्वी की संहति यदि उसके केंद्र पर ही संघनित मानी जाए और पृथ्वी का अर्धव्यास r हो तो पृथ्वी द्वारा उस पिंड पर कार्य करनेवाला आकर्षण बल :
F=G Mm/r‍2 ……………………..(2)
न्यूटन के द्वितीय गतिनियम के अनुसार किसी पिंड पर लगनेवाला बल उस पिंड की संहति तथा त्वरण के गुणनफल के बराबर होता है। अत: पृथ्वी के आकर्षण के प्रभाव में मुक्त रूप से गिरनेवाले पिंड पर कार्य करनेवाला गुरुत्वाकर्षण बल:
F=m g
जहाँ g उस पिंड का गुरुत्वजनित त्वरण (acceleration due to gravity) है, अत:
F/m = g………………………(3)
अर्थात g= पिंड की इकाई संहति पर कार्य करनेवाला बल।
किंतु समीकरण (2) से
F/m = G M/r2………………(4)
अतएव गुरुत्वजनित त्वरण g को बहुधा ‘पृथ्वी’ के गुरुत्वाकर्षण की तीव्रता भी कहते हैं।

गुरुत्व नियतांक का निर्धारण (Determination of G)

न्यूटन द्वारा गुरुत्वाकर्षण के नियम का प्रतिपादन होने के बाद ही गुरुत्व नियतांक G का मान ज्ञात करने की समस्या ने वैज्ञानिकों का ध्यान अपनी ओर आकृष्ट किया। इसका कारण यह था कि यह प्रकृति के मूल नियतांको (fundamental constants) में से एक है और देश, काल तथा परिस्थिति से सर्वथा निरपेक्ष है। इसलिए इसे सार्वत्रिक नियतांक (universal constant) कहते हैं। साथ ही, यह पृथ्वी की संहति से भी संबंधित किया जा सकता है (देखें समीकरण २)। अत: पृथ्वी की संहति एवं घनत्व ज्ञात करने के लिए भी इसके मान के ज्ञान की आवश्यकता पड़ती है। यह निम्नलिखित विवेचन से स्पष्ट हो जाएगा :
समीकरण (3) और (4) में तुलना करने पर
g = G M/r2
किंतु पृथ्वी की मात्रा (पृथ्वी को पूर्णत: गोल मानने पर)
M = (4/3) p r3 D
जहाँ D पृथ्वी का माध्य घनत्व (mean density) है।
g = G (4/3) p r3 D /r2= (4/3) G p r D
अर्थात्‌ G. D. = 3 g / (4 p r)

इस सूत्र से यह स्पष्ट है कि G या D में से एक का मान ज्ञात करने के लिये दूसरे का मान ज्ञात होना चाहिए। अतएव पृथ्वी का घनत्व ज्ञात करने से पूर्व G का ठीक मान ज्ञात कर सकने की विधियों की ओर वैज्ञानिकों का ध्यान आकृष्ट होना स्वाभाविक ही था।
गुरुत्व नियतांक का मान ज्ञात करने के लि, किए जानेवाले वैज्ञानिक प्रयासों को हम तीन कोटियों में विभक्त कर सकते हैं :
(1). पृथ्वी द्वारा किसी पिंड पर ठीक नीचे की ओर लगने वाले गुरुत्वाकर्षण बल की उस पिंड पर किसी भारी संहतिवाले प्राकृतिक पिंड, (जैसे पर्वत आदि) द्वारा लगनेवाले पार्श्विक (lateral) आकर्षण बल के साथ तुलना करके,
(2). पृथ्वी द्वारा किसी पिंड पर लगने वाले आकर्षण बल की किसी अन्य कृत्रिम पिंड द्वारा लगने वाले ऊर्ध्वाधर आर्कषण बल के साथ (किसी तुला द्वारा) तुलना करके और
(3). दो कृत्रिम पिंडों के बीच कार्यरत पारस्परिक आकर्षण बल की गणना करके।

Leave a Comment