परमाणु रिएक्टर प्रौद्योगिकी

जिस प्रकार कई परम्परागत तापीय ऊर्जा केंद्र, जीवाश्म ईंधन के जलने से निकलने वाली ताप ऊर्जा के दोहन से बिजली उत्पन्न करते हैं, वैसे ही परमाणु ऊर्जा संयंत्र, आम तौर पर परमाणु विखंडन के माध्यम से एक परमाणु के नाभिक से निकली ऊर्जा को परिवर्तित करते हैं।
जब एक अपेक्षाकृत बड़ा विखंडनीय परमाणु नाभिक (आमतौर पर यूरेनियम 235 या प्लूटोनियम-239) एक न्यूट्रॉन को अवशोषित करता है तो उस परमाणु का विखंडन अक्सर फलित होता है। विखंडन, परमाणु को गतिज ऊर्जा (विखंडन उत्पादों के रूप में ज्ञात) के साथ दो या दो से अधिक छोटे नाभिक में विभाजित करता है और गामा विकिरण और मुक्त न्यूट्रॉन को भी छोड़ता है। इन न्यूट्रॉनों के एक हिस्से को अन्य विखंडनीय परमाणु द्वारा बाद में अवशोषित किया जा सकता है तथा और अधिक विखंडन जन्म ले सकते हैं, जो और अधिक न्यूट्रॉन को छोड़ेंगे और इसी प्रकार आगे होता रहेगा.
इस परमाणु श्रृंखला अभिक्रिया को नियंत्रित करने के लिए न्यूट्रॉन विष और न्यूट्रॉन मंदक का प्रयोग किया जा सकता है, जो न्यूट्रॉन के उस भाग को परिवर्तित कर देता है जो विखंडन को आगे बढ़ाता है। असुरक्षित स्थितियों का पता चलने पर, विखंडन अभिक्रिया को बंद करने के लिए, परमाणु रिएक्टरों में आमतौर पर स्वचालित और हस्तचालित प्रणाली होती है।
एक शीतलन प्रणाली, रिएक्टर के केंद्र से ताप को हटाती है और उसे संयंत्र के अन्य क्षेत्र में भेजती है, जहां तापीय ऊर्जा का दोहन बिजली उत्पादन के लिए या अन्य उपयोगी कामों के लिए इस्तेमाल किया जा सकता है। आम तौर पर गर्म शीतलक को बॉयलर के लिए एक ताप स्रोत के रूप में इस्तेमाल किया जाएगा और बॉयलर की दाबावयुक्त भाप, एक या अधिक भाप टरबाइन द्वारा संचालित विद्युत जनरेटर को ऊर्जा देगा।
रिएक्टर के कई अलग-अलग डिज़ाइन हैं, जो विभिन्न ईंधन और शीतलक का प्रयोग करते हैं और इनकी नियंत्रण विधि विभिन्न होती है। इन डिज़ाइनों में से कुछ को किसी किसी विशिष्ट जरूरत को पूरा करने के लिए परिवर्तित किया गया है। परमाणु पनडुब्बी और विशाल नौसेना जहाजों के लिए प्रयुक्त रिएक्टर, उदाहरण के लिए, ईंधन के रूप में अत्यधिक संवर्धित यूरेनियम का इस्तेमाल किया जाता है। ईंधन का यह विकल्प रिएक्टर के ऊर्जा घनत्व को बढ़ाता है और परमाणु ईंधन लोड के प्रयोग किए जाने की अवधि को लंबा करता है, लेकिन अन्य परमाणु ईंधनों की तुलना में यह अधिक महंगा है और इससे परमाणु प्रसार का अधिक खतरा है।
परमाणु ऊर्जा उत्पादन के लिए ढेरों नए डिज़ाइन सक्रिय अनुसंधान के अधीन हैं, जिन्हें सामूहिक रूप से चतुर्थ पीढ़ी रिएक्टर कहा जाता है और भविष्य में व्यावहारिक ऊर्जा उत्पादन के लिए इनका इस्तेमाल किया जा सकता है। इनमें से कई नए डिज़ाइन, विखंडन रिएक्टरों को विशेष रूप से स्वच्छ, सुरक्षित और/या एक परमाणु हथियारों के प्रसार के खतरे को कम करने का प्रयास करते हैं। निष्क्रिय रूप से सुरक्षित संयंत्र (जैसे ESBWR) बनाए जाने के लिए उपलब्ध हैं और अन्य डिज़ाइन जिनके भूल-रक्षित होने का विश्वास है उन पर काम आगे बढ़ाया जा रहा है। संलयन रिएक्टर, जो भविष्य में व्यवहार्य हो सकते हैं, परमाणु विखंडन के साथ जुड़े कई जोखिमों को कम या समाप्त कर देंगे।

जीवन चक्र

एक परमाणु रिएक्टर, परमाणु ऊर्जा के लिए जीवन चक्र का ही हिस्सा है। यह प्रक्रिया खनन के साथ शुरू होती है (यूरेनियम खनन देखें). यूरेनियम खानें भूमिगत, खुले-गड्ढे की, या स्वस्थानी लीच खानें होती हैं। किसी भी हालत में, यूरेनियम अयस्क को निकाला जाता है, आमतौर पर एक स्थिर और ठोस रूप में परिवर्तित किया जाता है, जैसे यल्लोकेक और फिर उसे किसी प्रसंस्करण सुविधा में भेजा जाता है। यहां, यल्लोकेक को यूरेनियम हेक्साफ्लोराइड में परिवर्तित किया जाता है, जिसे फिर विभिन्न तकनीकों का उपयोग करते संवर्धित किया जाता है। इस बिंदु पर, संवर्धित यूरेनियम, जिसमें प्राकृतिक 0.7% U-235 से अधिक है, उसका प्रयोग उचित संरचना और ज्यामिति की छड़ें बनाने के लिए इस्तेमाल किया जाता है, उस विशेष रिएक्टर के लिए जिसके लिए ईंधन नियत है। ईंधन छड़ें रिएक्टर के अंदर करीब तीन परिचालन चक्र पूरा करती हैं (आम तौर पर अब कुल 6 साल), सामान्यतः जब तक कि उनका करीब 3% यूरेनियम विखंडित न हो जाए, तब उन्हें एक खर्चित ईंधन पूल में भेजा जाता है जहां विखंडन द्वारा उत्पन्न अल्प-जीवित आइसोटोप नष्ट हो जाते हैं। एक शीतलक तालाब में लगभग 5 साल के बाद, खर्चित ईंधन रेडिओधर्मी और तापीय आधार पर संभालने के लिए पर्याप्त ठंडा हो चुका होता है और उसे शुष्क भंडारण पीपों में रखा जा सकता है या पुनः संवर्धित किया जा सकता है।
परंपरागत ईंधन संसाधन
यूरेनियम, भू-पर्पटी में पाया जाने वाला काफी आम तत्व है। यूरेनियम लगभग उतना ही आम है जितना भू-पर्पटी में टिन या जर्मेनियम का पाया जाना और रजत की तुलना में यह 35 गुना आम है। यूरेनियम अधिकांश चट्टानों, धूल और महासागरों का एक घटक है। यह तथ्य कि यूरेनियम इतना बिखरा हुआ है, एक समस्या है, क्योंकि यूरेनियम खनन आर्थिक रूप से केवल वहीं व्यवहार्य है जहां बड़ी मात्रा में इसका संकेन्द्रण हो। फिर भी, वर्तमान में नापे गए दुनिया के यूरेनियम संसाधन, जो आर्थिक रूप से 130 USD/kg की कीमत पर वसूले जा सकते हैं, खपत की वर्तमान दर के अनुसार “कम से कम एक सदी” तक चलने के लिए पर्याप्त हैं। अधिकांश खनिजों की सामान्य तुलना में, यह निश्चित संसाधनों के एक उच्च स्तर को दर्शाता है। अन्य धातु खनिज के साथ अनुरूपता के आधार पर, कीमत में वर्तमान स्तर से दुगुनी वृद्धि करने से मापन किए गए संसाधनों में, समय के साथ दस गुना वृद्धि होने की उम्मीद की जा सकती है। हालांकि, परमाणु ऊर्जा की लागत, मुख्यतः विद्युत् केंद्र के निर्माण में निहित है। इसलिए, उत्पादित बिजली की कुल लागत में ईंधन का योगदान अपेक्षाकृत थोड़ा है, अतः एक अत्यधिक ईंधन मूल्य वृद्धि का अंतिम कीमत पर अपेक्षाकृत कम असर होगा। उदाहरण के लिए, आम तौर पर यूरेनियम की बाजार कीमत का एक दोहरीकरण, हल्के जल के रिएक्टर के लिए ईंधन की कीमत में 26% की वृद्धि करेगा और बिजली की लागत में करीब 7%, जबकि प्राकृतिक गैस की कीमत में दुगुनी वृद्धि, आम तौर पर बिजली की कीमत में उस स्रोत से 70% की बढ़ोतरी करेगी। पर्याप्त उच्च कीमतों पर, स्रोतों से अंततः निकासी, जैसे ग्रेनाइट और समुद्री जल आर्थिक रूप से संभव हो जाते हैं।
वर्तमान के हल्के जल रिएक्टर, परमाणु ईंधन का अपेक्षाकृत अकुशल प्रयोग करते हैं और केवल बहुत दुर्लभ यूरेनियम-235 आइसोटोप का विखंडन करते हैं। परमाणु पुनर्संसाधन इस कचरे को पुनः उपयोग के लायक बना सकता है और अधिक कुशल रिएक्टर डिज़ाइन, उपलब्ध संसाधनों के बेहतर प्रयोग की अनुमति देते हैं।

प्रजनन
वर्तमान हल्के जल के रिएक्टरों के विपरीत, जो यूरेनियम-235 (सारे प्राकृतिक यूरेनियम का 0.7%) का प्रयोग करते हैं, फास्ट ब्रीडर रिएक्टर यूरेनियम- 238 (सारे प्राकृतिक यूरेनियम का 99.3%) का उपयोग करते हैं। यह अनुमान लगाया गया है कि इन संयंत्रों में 5 बीलियन वर्षों तक प्रयोग के लायक यूरेनियम-238 मौजूद हैं।
ब्रीडर प्रौद्योगिकी का कई रिएक्टरों में इस्तेमाल किया गया है, लेकिन ईंधन को सुरक्षित तरीके से पुनर्संसाधित करने की उच्च लागत को, आर्थिक रूप से उचित बनने से पहले 200 USD/kg से अधिक की यूरेनियम कीमतों की आवश्यकता है। यथा दिसम्बर 2005, ऊर्जा उत्पादन करने वाला एकमात्र ब्रीडर रिएक्टर बेलोयार्स्क, रूस में BN-600 है। BN-600 का बिजली उत्पादन 600 मेगावाट है – रूस ने बेलोयार्स्क परमाणु ऊर्जा संयंत्र में एक और इकाई, BN-800, के निर्माण की योजना बनाई है। इसके अलावा, जापान के मोंजू रिएक्टर को पुनः आरंभ करने की योजना है (1995 से बंद होने के बाद) और चीन और भारत, दोनों ब्रीडर रिएक्टर बनाने का इरादा रखते हैं।
एक अन्य विकल्प होगा यूरेनियम-233 का प्रयोग जिसे थोरिअम ईंधन चक्र में थोरियम से विखंडन ईंधन के रूप में पैदा किया जाता है। थोरियम, भू-पर्पटी में यूरेनियम से 3.5 गुना अधिक आम है और इसका भौगोलिक लक्षण भिन्न है। यह कुल व्यावहारिक विखंडन-योग्य संसाधन आधार को 450% तक बढ़ा देगा। प्लूटोनियम के रूप में U-238 के उत्पादन के विपरीत, फास्ट ब्रीडर रिएक्टर आवश्यक नहीं हैं – इसे और अधिक पारंपरिक संयंत्रों में संतोषजनक रूप में संपादित किया जा सकता है। भारत ने इस तकनीक में झांकने की कोशिश की है, क्योंकि इसके पास प्रचुर मात्रा में थोरियम भंडार हैं लेकिन यूरेनियम थोड़ा ही है।

विलय
संलयन ऊर्जा के पैरोकार ईंधन के रूप में सामान्यतः ड्यूटेरिअम या ट्रिटियम के उपयोग का प्रस्ताव करते हैं, दोनों ही हाइड्रोजन के आइसोटोप हैं और कई मौजूदा डिज़ाइनों में बोरान और लिथियम का भी. एक संलयन ऊर्जा उत्पादन को मौजूदा वैश्विक उत्पादन के बराबर मान कर और यह मानकर कि इसमें भविष्य में वृद्धि नहीं होगी, तो ज्ञात वर्तमान लिथियम भंडार 3000 साल तक चलेंगे, समुद्री जल का लिथियम 60 मिलियन वर्ष चलेगा और एक अधिक जटिल संलयन प्रक्रिया जो समुद्री जल से केवल ड्यूटेरिअम का उपयोग करती है उसके पास अगले 150 बीलियन वर्षों तक के लिए ईंधन होगा। यद्यपि इस प्रक्रिया को अभी भी सिद्ध किया जाना है, कई विशेषज्ञ और नागरिक संलयन को भविष्य की एक आशाजनक ऊर्जा के रूप में देखते हैं जिसकी वजह है उसके द्वारा उत्पादित अपशिष्ट की अल्पकालिक रेडियोधर्मिता, इसका निम्न कार्बन उत्सर्जन और इसका भावी बिजली उत्पादन.
ठोस अपशिष्ट
परमाणु ऊर्जा संयंत्रों से सबसे महत्वपूर्ण अपशिष्ट धारा है खर्चित परमाणु ईंधन. यह मुख्यतः अपरिवर्तित यूरेनियम से बना है और साथ ही ट्रांससुरानिक एक्टिनाइड्स की महत्वपूर्ण मात्रा (अधिकांशतः प्लूटोनियम और क्यूरिअम). इसके अलावा, इसका करीब 3%, परमाणु अभिक्रिया से निकला विखंडन उत्पाद है। एक्टिनाइड्स (यूरेनियम, प्लूटोनियम और क्यूरिअम) लम्बी अवधि की रेडियोधर्मिता के बड़े हिस्से के लिए जिम्मेदार हैं, जबकि विखंडन उत्पाद, अल्पावधि की रेडियोधर्मिता के बड़े हिस्से के लिए जिम्मेदार हैं।

Leave a Comment