आक्सीहीमोग्लोबिन में लौह की ऑक्सीकरण स्थिति

रुधिरवर्णिका या हीमोग्लोबिन (वर्तनी में हेमोग्लोबिन और संक्षिप्त में एचबी या एचजीबी) पृष्ठवंशियों[1] की लाल रक्त कोशिकाओं और कुछ अपृष्ठवंशियों के ऊतकों में पाया जाने वाला लौह-युक्त आक्सीजन का परिवहन करने वाला धातुप्रोटीन है. रक्त में मौजूद हीमोग्लोबिन फेफड़ों या गिलों से शरीर के शेष भाग (अर्थात् ऊतक) को ऑक्सीजन का परिवहन करता है, जहां वह कोशिकाओं के प्रयोग के लिये आक्सीजन को मुक्त कर देता है.
स्तनपायियों में लाल रक्त कोशिकाओं के शुष्क भाग का करीब 97% और कुल भाग (पानी सहित) का लगभग 35% प्रोटीन से बना होता है |
हीमोग्लोबिन की आक्सीजन को बांधने की क्षमता हीमोग्लोबिन के प्रति ग्राम के लिये 1.36 और 1.37 मिली O2 के बीच होती है, जो कुल रक्त आक्सीजन क्षमता को सत्तर गुना बढ़ा देती है.
हीमोग्लोबिन लाल रक्त कोशिकाओं और उनको उत्पन्न करने वाली प्रोजेनिटर रेखाओं के बाहर भी पाई जाती है. हीमोग्लोबिन युक्त अन्य कोशिकाओं में सबस्टैंशिया नाइग्रा के ए9 डोपमिनर्जिक न्यूरान, मैक्रोफैज, अल्वियोलार कोशिकाएं और गुर्दों की मेसैंजियल कोशिकाएं शामिल हैं. इन ऊतकों में हीमोग्लोबिन की भूमिका आक्सीजन के परिवहन की जगह एंटीआक्सीडैंट और लौह चयापचय के नियंत्रक के रूप में होती है.

आनुवंशिकी

हीमोग्लोबिन में अधिकतर प्रोटीन (ग्लोबिन श्रृंखलाएं) होता है और ये प्रोटीन अमाइनो एसिडों की श्रृंखलाओं से बने होते हैं. ये श्रृंखलाएं रैखिक रूप में होती हैं, जैसे किसी लिखे गए वाक्य में अक्षर होते हैं या माला में मोती लगे होते हैं. सभी प्रोटीनों में अमाइनों एसिडों की प्रोटीन श्रृंखला में अमाइनो एसिडों के प्रकारों में विभिन्नता उस प्रोटीन के रसायनिक गुणों और कार्य को निश्चित करती है. यही बात हीमोग्लोबिन पर भी लागू होती है, जिसमें अमाइनो एसिडों की श्रृंखला आक्सीजन के प्रति प्रोटीन के आकर्षण जैसे महत्वपूर्ण कार्यों को प्रभावित कर सकती है.
हीमोग्लोबिनों में ग्लोबिन प्रोटीनों की अमाइनो एसिड श्रृंखलाएं विभिन्न जातियों में भिन्न होती है, हालांकि भिन्नताएं जातियों के बीच विकास की दूरी के साथ बढ़ती हैं. उदाहरण के लिये मानव और चिम्पान्ज़ियों में सबसे आम हीमोग्लोबिन श्रृंखलाएं समान होती हैं, जबकि यह समान श्रृंखला गुरिल्ला की सबसे आम अमाइनो एसिड श्रृंखला से अल्फा और बीटा ग्लोबिन प्रोटीन श्रृंखलाओं में केवल एक अमाइनो एसिड द्वारा भिन्न होती है. ये भिन्नताएं कम संबंध वाली जातियों में अधिक होती हैं. हीमोग्लोबिन के अलावा अन्य प्रोटीनों की तरह जातियों के बीच डीएनए श्रृंखलाओं में भिन्नताएं उनके द्वारा कोड की गई अमाइनो एसिड श्रृंखलाओं की भिन्नताओं से अधिक होती हैं, क्यौंकि विभिन्न डीएनए श्रृंखलाएं एक ही अमाइनो एसिड की ओर इंगित कर सकती हैं.
किसी एक जाति में भी, हीमोग्लोबिन के विभिन्न प्रकार हमेशा मौजूद होते हैं, हालांकि हर जाति में कोई एक श्रृंखला सामान्यतः सबसे अधिक पाई जाती है. हीमोग्लोबिन प्रोटीन की जीनों की विकृतियों के कारण हीमोग्लोबिन के विभिन्नतायुक्त प्रकार उत्पन्न होते हैं.[10][11] इनमें से अनेक विकृत प्रकारों के कारण कोई रोग नहीं होता है. लेकिन कुछ विकृत हीमोग्लोबिनों के कारण हीमोग्लोबिनोपैथीज़ नामक आनुवंशिक रोगों के एक समूह की उत्पत्ति होती है. सिकल सैल रोग सबसे मशहूर हीमोग्लोबिनोपैथी है, जो मनुष्य का पहला रोग है, जिसकी प्रक्रिया आण्विक स्तर पर समझी गई है. एक (अधिकतर) अन्य रोगों के समूह, थैलेसीमिया में, ग्लोबिन जीन नियंत्रण की समस्याओं और विकृतियों के कारण सामान्य या कभी-कभी असामान्य हीमोग्लोबिनों का कम मात्रा में उत्पादन होता है. इन सभी रोगों में रक्ताल्पता होती है.
अन्य प्रोटीनों की तरह, हीमोग्लोबिन के अमाइनो एसिडों की श्रृंखलाएं अनुकूली हो सकती हैं. उदहारण के लिए, हाल के अध्ययनों में दर्शाया गया है कि पर्वतों में रहने वाले हरिण मूषक कैसे उनके भिन्न जीन प्रकारों की मदद से ऊंचाईयों पर पाई जाने वाली पतली वाय़ु में जीवित रहते हैं. नेब्रास्का-लिंकन विश्वविध्यालय के एक शोधकर्ता ने चार भिन्न जीनों में विकृतियां पाईं जिन्हें निचले इलाकों और पर्वतों में रहने वाले हरिण मूषकों के बीच पाई जाने वाली भिन्नताओं के लिये जिम्मेदार समझा जाता है. पहाड़ों और निचले इलाकों से पकड़े गए जंगली मूषकों की जांच करने पर पाया गया कि दोनों नस्लों की जीनें एक समान थीं, सिवाय उनके जो उनके हीमोग्लोबिन की आक्सीजन-वाहक क्षमता को नियंत्रित करती हैं. पहाड़ी मूषक की जीनीय भिन्नता उसे आक्सीजन का अधिक बेहतर प्रयोग करने की क्षमता प्रदान करती है, क्योंकि पर्वतों जैसे ऊंचे स्थानों पर वह कम मात्रा में उपलब्ध होती है. प्राचीन हाथियों के हीमोग्लोबिन की विकृतियों के कारण कम तापमान के इलाकों में भी आक्सीजन की आपूर्ति संभव होती थी, जिससे वे प्लीस्टोसीन के दौरान अधिक ऊंचाईयों पर आसानी से रह सकते थे |

आक्सीहीमोग्लोबिन में लौह की ऑक्सीकरण स्थिति

आक्सीकृत हीमोग्लोबिन की आक्सीकरण स्थिति निश्चित करना कठिन है क्यौंकि प्रायौगिक मापन से आक्सीहीमोग्लोबिन (एचबी-ओटू) डायामैग्नेटिक होती है (कोई अयुगल इलेक्ट्रान नहीं होते), फिर भी आक्सीजन और लौह दोनों में कम-ऊर्जा वाली इलेक्ट्रान संरचनाएं पैरामैग्नेटिक होती हैं (यानी इस यौगिक में कम से कम एक अयुगल इलेक्ट्रान होता है). आक्सीजन और उससे संबंधित लौह की आक्सीकरण दशाओं के न्यूनतम-ऊर्जा प्रकार निम्न हैं:
न्यूनतम ऊर्जा वाली आक्सीजन की जाति, ट्रिप्लेट आक्सीजन में बंधनविरोधी π* आण्विक आर्बाइटलों में दो अयुगल इलेक्ट्रान होते हैं.
लौह (II) एक हाई-स्पिन संरचना में होता है जहां अयुगल इलेक्ट्रान Eg बंधनविरोधी आर्बाइटलों में होते हैं.
लौह (III) में इलेक्ट्रानों की अयुग्म संख्या होती है और इसलिये उसमें किसी भी ऊर्जा स्थिति में एक या अधिक अयुगल इलेक्ट्रान होना आवश्यक होता है.
ये सभी संरचनाएं डायामैग्नेटिक न होकर, पैरामैग्नेटिक (अयुगल इलेक्ट्रान युक्त) होती हैं. इस तरह, देखे गए डायामैग्नेटिज्म और अयुगल इलेक्ट्रानों को समझने के लिये लौह और आक्सीजन के संयोग में इलेक्ट्रनों का एक असहज वितरण होना जरूरी है.
डायामैग्नेटिक (बिना नेट स्पिन के) एचबी-ओटू के उत्पादन के लिये तीन संभावनाएं हैं:
कम-स्पिन का Fe2+ सिंग्लेट आक्सीजन से बंधित होता है. कम-स्पिन लौह और सिंग्लेट आक्सीजन, दोनों डायामैग्नेटिक होते हैं. लेकिन, आक्सीजन का सिंग्लेट प्रकार अणु का उच्चतर-उर्जा प्रकार होता है.
कम-स्पिन Fe3+ का बंधन. O2- (सुपरआक्साइड आयन) से होता है और दो अयुगल इलेक्ट्रान प्रतिफेरोमैग्नेटिकीय तरीके से युग्म बन जाते हैं, जिनमें डायामैग्नेटिक गुण होते हैं.
कम स्पिन Fe4+ का बंधन पराक्साइड,O22- से होता है. दोनों ही डायामैग्नेटिक होते हैं.

सीधी प्रायौगिक जानकारी
एक्स-रे फोटोइलेक्ट्रान स्पेक्ट्रोस्कोपी के अनुसार लौह की आक्सीकरण स्थिति लगभग 3.2 होती है.
O-O बांड की इन्फ्रारेड आवृत्तियों के अनुसार बांध की लंबाई सुपरआक्साइड (बांड आर्डर करीब 1.6, और सुपरआक्साइड 1.5) के अनुकूल होती है.
इस तरह, एचबी-ओटू में लौह की सबसे नजदीकी औपचारिक स्थिति आक्सीकरण +3 दशा होती है, जिसमें आक्सीजन -1 दशा (सुपरआक्साइड. O2- के रूप में) में होती है. इस संरचना में डायामैग्नेटिज्म सुपरआक्साइड पर मौजूद एकल अयुगल इलेक्ट्रान के लौह पर स्थित एकल अयुगल इलेक्ट्रान से प्रतिफेरोमैग्नेटिक तरीके से व्यवस्थित होने से उत्पन्न होता है, जिससे प्रयोग के डायामैग्नेटिक आक्सीहीमोग्लोबिन के अनुसार, सारी संरचना को कोई कुल स्पिन नहीं प्राप्त होती.
डायामैग्नेटिक आक्सीहीमोग्लोबिन के लिये ऊपर दी गई तीन संभावनाओं में से दूसरी का प्रयोग द्वारा सही पाया जाना आश्चर्यपूर्ण नहीं है– सिंग्लेट आक्सीजन (संभावना सं. 1) और चार्ज के बड़े विभाजन (संभावना सं. 3) दोनों प्रतिकूल उच्च-ऊर्जा दशाएं हैं. एचबी-ओटू में लौह का उच्चतर आक्सीकरण स्थिति में जाना अमु के आकार को कम कर देता है, जिससे वह पारफाइरिन रिंग के तल पर चला जाता है और कोआर्डीनेटेड हिस्टिडिन रेजिड्यू को खींच कर ग्लाबुलिनों में देखे जाने वाले ऐलोस्टीयरिक परिवर्तनों की शुरूआत करता है.
जैव-अकार्बनिक रसायनज्ञों द्वारा प्रस्तुत प्रारंभिक सिद्धांतों के अनुसार संभावना सं. 1 सही थी और लौह को आक्सीकरण दशा II. में होना चाहिये. ऐसा इसलिये लगता था क्यौंकि लौह की मेटहीमोग्लोबिन के रूप में आक्सीकरण दशा III, जब .O2- इलेक्ट्रान को “पकड़नें” के लिये सुपरआक्साइड मौजूद न हो, तो हीमोग्लोबिन को हवा में मौजूद सामान्य ट्रिप्लेट O2 को बांधनें में अक्षम बना देती है. इसलिये यह मान लिया गया कि जब आक्सीजन गैस फेफड़ों में बंधी होती है, तो लौह Fe(II) के रूप में रहता है. इस पहले वाले क्लासिक मॉडल में लौह का रसायनशास्त्र लुभावना था, लेकिन डायामैग्नेटिक उच्च-ऊर्जा सिंग्लेट आक्सीजन की आवश्यकता कभी समझ में नहीं आई. यह तर्क दिया गया कि आक्सीजन अणु का बंधन उच्च स्पिन लौह (II) को सशक्त-क्षेत्रीय लाइगैंडों के एक आक्टाहेड्राल क्षेत्र में रख देता है –क्षेत्र में इस परिवर्तन से स्फटिक क्षेत्र में वृद्धि से उर्जा का विभाजन हो जाता है, जिससे लौह के इलेक्ट्रान जोड़े बनाकर कम-स्पिन वाली संरचना का निर्माण करते हैं, जो Fe(II) में डायामैग्नेटिक होते हैं. यह जबरन कम-स्पिन युग्लीकरण आक्सीजन के बंधने पर होता है, लेकिन यह लौह के आकार में परिवर्तन को समझाने के लिये काफी नहीं है. लौह के छोटे आकार और बढ़ी हुई आक्सीकरण दशा, व आक्सीजन के कमजोर बांड को समझने के लिये आक्सीजन द्वारा लौह से एक अतिरिक्त इलेक्ट्रान को निकालना आवश्यक है.
यह ध्यान में रखना चाहिये कि पूर्ण-संख्या आक्सीकरण दशा का निर्धारण एक औपचारिकावाद है, क्यौंकि पूर्ण इलेक्ट्रान-अंतरण में दोषहीन बांड क्रमों के लिये कोवैलेंट बांडों का होना आवश्यक नहीं है. इस तरह पैरामैग्नेटिक एचबी-ओटू के तीनों माडल कुछ हद तक एचबी-ओटू की वास्तविक इलेक्ट्रानिक संरचना के लिये जिम्मेदार हो सकते हैं. लेकिन Fe(II) की अपेक्षा एचबी-ओटू में लौह का माडल का Fe(III) होना अधिक सही लगता है.

Leave a Comment